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Abstract

This paper deals with the stable c-server queue with renewal

input. The service time distributions may de different for the

various servers. They are however all probablility distributions

of phase type. It is shown that the stationary distribution of

the queue length at arrivals has an exact geometric tail of rate

n, 0 <n< 1. It is further shown that the stationary walting

time distridution at arrivals has an exact exponential tail of
decay parameter £ > 0. The quantities n and £ may be evaluated
together by an elementary algorithm. For both distributions, the
multiplicative constants which arise in the asymptotic forms may bp’
fully characterized. These constants are however difficult to

compute in general.
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1. _Introductien

Very few algorithmically tractable results are known for
multi-server queues, except in the restrictive case where the
service time distridbutions are exponentlal, In this paper, we
obtain results on the tall behavior of the stationary distributions
of the queue length and the walting time for a c-server queue with

renewal input. The various servers are allowed to be heterogeneous,

1.e. the service time distridbutions may be different for different

servers. The c¢ service time distridbutions are however required

to be of phase type.

Ir Pm and W(x) denote respectively the stationary proba-
billities that a customer arriving to the queue finds at least m
customers in the system and that he has to wait for a time at most

X, then we establish the asymptotic formulas
P, = Kn* + o(a™), as m + =,

and

1 - W(x) = K e~ tX 4 O(e—ex), as x + »

where K1 = ncK. The constants n ‘and £, which satisfy 0 <n <1

and § > 0, will de shown to satisfy a system of equations, which
may easlly be sQlved by elementary numerical procedures. The
positive constants K and Kl wlll be fully characterized, but

their direct numerical evaluation 1s seen to be difficult, in

general.
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In the course of the discussion, a number of results of
theoretical interest on the GI/PH/c queue with heterogeneous
servers will dbe odbtained. Because of the huge dimensions of the
matrices, which arise in these results, their feasibility for
algorithmic implementation 1s limited to particular cases.

The proofs of the various results in this paper rely heavily
on the elementary properties of phase type distributions [4, 5, 8]
and on the theory of block-partitioned stochastic matrices with a
matrix-geometric invariant vector [6, 7, 81. Specific references
will be gilven for each prior result, which is used, but no easily
avallable proofs will be repeated. The particular results for the
GI/PH/1 queue were established in Neuts (8, 9]. Corresponding
results for the PH/PH/c queue with identical servers are discussed
in Takahashi (11], while iterative numerical procedures for that
model are proposed in Takahashli and Takami [10].

The formal description of the model is as follows. Customers
arrive to a c-server system according to a renewal process with
interarrival time distribution PF(:) of finite mean A' . The
distribution F(°) satisfies F(0+) = 0. The service time distri-
bution of a customer may depend on the server to which he gains
access, Services by the J-th server, 1l s J < ¢, have a common
distribution of phase type, with irreducible representation
(g(J), S(J)] where B(J) 1s a probability row-vector of dimension
v(J) and S(J) 1s a square, stable matrix of order v(J). The

corresponding vector S°(J) is defined by §?(J) = - S(J)e. Through-

out this paper, the symbol e will denote a column vector with all
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its components equal to one and of dimension appropriate to the

formula in which it occurs. The mean service time u'(J) of the

J-th server 1s given by wu'(J) = - g(J) s~ gy e.

It will be assumed that all service times are independent of
the arrival process., For any k 2 2 successive customersg, the
service times are assumed to de conditionally independent, given
the labels of the servers by which they are processed. Under the
stated assumptions, the model has a Markov chain, embedded at the
successive epochs of arrival. Its states are of three types.

For 1 2 ¢, the state descrided dy (1, hyy Ny, es, hc) signifies
that, immediately prior to the arrival;-there are 1 customers in. PN
the system and that for 1< J < ¢, the j=th server is in the

phase hJ of his PH-~distribution. The set of all such states with

a fixed index 1 will .be denoted by 1. The states (c-1; hys «ees hc)
are similarly defined, but one of the phase states now corresponds

to the initilal service phase, selected by the arriving customer.

The remaining states correspond to the case where, prior to the
arrival, there are fewer than ¢ - 1 customers in the system. The
precise labeling of these states 1s immaterial to our discussion,

The set of all such states will be denoted by E. The states

(1, Dys eoes hc)' for 12¢-1,1s ) s¢,1cs hJ s v(J), are

listed in lexicographic order. The states in E u(g-1) are called

the boundary states.

In order to define the transition probability matrix ; of

the embedded Markov chain, we introduce the matrices PJ(r,t),




E for r 20, t 20,and 1 <J s c. These matrices satisfy the
differential equations

s P100,8) = P, (0,t) S(1),
1)

BjCr,t) = Py(r,t) S(J) + Py Cr-1,) $°C3) (),

for r 2 1, with the initial conditions PJ(r,OI = 8,0 I, for
r 2 0, Their significance 1s the same as in (5) or [6].

We note that
(2) z:0 Py(r,t) 2" = exp{[S(J) + z S°(J) B(J)It},
rs=

for t 20, 0 sz <1,

The matrices Ak, k 2 0, are defined by
[ -}

(3) A =T l P,(ry,t) Py(r,,t) 2... # Pc(rc,t) d F(t),

for k 2 0. The summation is over all c-tuples (rl, ey rc),
which satisfy ry 20, .04y r, 20, ry + ... + r, -Ak. The symbol

® stands for the Kronecker product of matrices. As shown in [6],
the matrices PJ(r,t) are positive for r 21, t > 0, and 1 < J < c.
It is therefore clear that the matrices Ak, k 2 ¢, are positive.

The matrices Ak’ k 2 0, are of order m, given by

(4) m= 1 v(j).
9=1

| From Formulas (2) and (3), it follows that

L e




(5) A%(z) = [ A, z¥

k=0 X

- l exp{CS(1)+25°(1)8(1) It} g.. . g expllS(c)+2s°(c)p(c) It }aF(t).

The matrix A%¥(z) 1is positive for 0 < z < 1.

The transition probability matrix ; is now given by

E ‘el | ¢ ctl ct2 . . . 4 ct3 vee g
T — i
E , 0 0 0 0 e |
e=1 | : A, 0 0 0 '
----T-----r--‘.- ————— - e m oem m e e e - ;
: ' !
: !
P °+1 A A A 0 ce
(6) p= — |2 ! °
, |
!
. i . . . .
. ! . . . .
t

The elements in the columns, labeled E and ¢=1, are immaterial
to our discussion. They are, in general, exceedingly complicated
and depend on the rule by which arriving customers are assigned to
free servers., Explicit, but highly involved expressions are gilven
for the case ¢ = 2, in Chapter 4 of (8]. In all properly defined
cases, the matrix ; is irreducible,

The matrix A= ¥ Ak = A®(1), is a strictly positive, stochastic
k=0




matrix. Let 6(J) be the positive probability vector satisfying

NPTPIRT WA PR a s b s e

3 (1) 8(3) [S(3) + 823 B(I =0 83 e =1,

for 1 s J s ¢, then it readily follows from (5) that the m-vector ) I
which satisfies wA = 7, 1e = 1, 1s given by

(8) m=6(1) @ ... 2 8(c).

A A AT RN W O 1, T

By using elementary formulas, proved in [5], we may also express

the vector g% = f x A, e, explicitly in terms of the data of the
k=1

model. We then easily verify that

T

(9) zg* =2t £ ourl().
I=1

As shown in Chapter 1 of (8], the Markov chain P 1is positive re-

current 1f and only if T g* > 1, or equivalently

e 3 e TR R AR+ S T R Gl e

(10) o §oucl,
J=1

o Y S T 4

The arrival rate A"l to the queue must be less than the combined
service rate of the ¢ servers. This intuitive equilibrium con-

dition may also be proved by applying the main theorem in Lavenberg
£31.

The invariant probability vector x of P 1is now partitioned

into vectors Xps X4 10 Zoo Xagys oo where the vectors Xy i2¢ -1,

are m-vectors and the vector EE 28 of dimension card (B).

It then follows from general results, proved in (7] or (8],
that S




(11) , for 1 2¢ -1,

Xy " %

where the positive matrix R is the minimal nonnegative solution
to the nonlinear matrix equation
(12) R= ¥ fa.

k=0
The vectors Xp and 'Ec-l are determined, up to a multiplicative
constant, by solving a homogeneous system of linear equatilons.

That constant 1s determined by use of the normalizing equation

(13) Xp & ¥ X, g (1-r)~} e=1.

The spectral radius n = sp(R), is the unique solution in
(0,1) of the equation

(14) z = X(z),

where X(z) 1s the spectral radius of A%*(z). The matrix R is
also the unique nonnegative solution of spectral radius less than

one to the equation (12).

2. Preliminary Results

The probability distribution of phase type with irreducible

representation [8(J), S(J)] has a rational Laplace-Stieltjes trans-

form, given by

(15) 4y(s) = 8(3) [s1-S(NT 5°(0), for Re s 2 O.

Let the abscissa of convergence of ¢J(s) be -TJ < 0. The

function ¢J(s) is then defined, positive and convex decreasing

on the interval (-tJ,°).
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Lemma 1.

The equation

=

(16) z ¢J(s) = 1,

has a unique real soclution sJ = wJ(z), for every z in (0,11].
The function wj(~) satisfies -1 < wJ(z) < 0, and is strictly
increasing on (0,11. Moreover wJ(0+) = =Ty, and wj(l) = u"l(J).

The quantity wJ(z) is the eigenvalue of maximal real part
of the matrix S(J) + z§P(J) B(J). The corresponding left eigen-

vector u(J,z), normalized by u(Jj,z) e = 1, is glven by e . .

17) u(3,z) = z2(z-1)"1 wd(z) Q(J)ij(z)I—S(J)J'l, for 0 <z <1,

= 0(J), for z = 1.

Iy
Proof E

Essentially the same results were proved in [(1ll]. For ease
of reference, we repeat the proof. The first set of properties of 3
wj(z) follow readily from consideration of the graph of ¢J(s) {
and from the equation (16). The equation

(18) u(d,z) [8(J) + z s°(J) B(I1 = ¥y(2) u(g,2),

leads to

u(d,z) = z [u(s,2) $°(9)1 &9 [v,(2)T - s()1°L,

Postmultiplication by S°(J) 1leads to z 640¥,(2)]) = 1. The
inner product u(J,z) §?(J) does not vanish, since the matrix

wj(z) I ~S(J) 1s nonsingular for 0 < z £ 1.
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The vector u(J,z) = exp[-¢J(z)t]-§(J) exp(S(J)t] dt, 1is
positive, since the vector™ B8(J) exp(S(J)t]l is positive for t > 0,
as was shown in [6]. This implies that the eigenvalue wj(z) of
the irreducible stable matrix S(J) + z‘§?(3)’§(3), 1s the elgen-

value of maximal real part. The normalization u(J,z) e = 1,
readily yields (17).

Lemma 2.

The maximal eigenvalue X(z) of A®*(z) 1s given by

¢
(19) X(z) = f{ - I WJ(Z)], for 0 <z <1,
J=1

where f(*) 1is the Laplace-Stielt]Jes transform of the interarrival
time distribution F(-). The corresponding eigenvector u(z) 1s

given by
(20) u(z) = u(l,z) ® ... g ule,z).

Proof

The vector u(z) 1s clearly positive and satisfles u(z) e = 1.

It readily follows from (18) that
u(d,z) exp {[S(J) + z 8°(J) (It} = exp EwJ(Z)tJ ulJ,z),
and hence by (5), that
u(z) A*(z) = £ ( -ng vy(2)1 u(z).

This clearly implies (19) and completes the proof.

Let now n be the unique solution in (0,1) of the equation

(14). The vector u(n) = u(l,n)e® ... g ule,n), is then given by
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uJ,n) = n(n-1)"1 wd(n) ,B_(J)L‘wd(n) I s(J)J"l, for 1 s J s c.

As shown in Chapter 1 of (8], the vector u(n) is also the left
eigenvector of the matrix R, corresponding to 1its Perron eigen-

value n.

3. Asymptotic Behavior of the Queue Length Density

Theorem 1

The stationary density of the gqueue length at arrivals satisfles

(21) z
i=k

k=c+1 k)
]

+ ofn as k + =,

es (1-n)"N(x,_;2) n

251 =

where 2z 1s the right elgenvector of R, corresponding to the

eigenvalue n and satisfies u(n) z = 1.

Proof

Let us write u for u(n). A classical property of irre-

ducible, nonnegative matrices now ylelds that

Ri = ni zut O(ni), as i + =,
Since
o k-c+1 1

Formula (21) readily follows.

Remark

We clearly also have

(22)

lectl lec+l
R =n (x,.

x, =X 12 u+ton), as 1+«

=-1




)
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This implies that
(23) _ -x-i ‘
.Ei.s-vg, as 1 » =,

The left hand side 1s the conditional probability density of
the c-tuple of service phases, given that the arriving customer
finds 1 customers in the queue. For large 1, we find that the
Joint conditional contribution of the c¢ residual service times

has the limit distribution with c-fold Laplace-Stileltjes transform

h(sy,...,8,) = gﬂ[sll-s(1)3'1§?(l)a...n[scI-S(c)]'l§?(c)}

ﬁ -1 «0
= P_(J’n) [sJI-S(J)] §_ (J)o
J=1

We see that for large 1, the conditional residual service times
in the ¢ servers, given that the arriving customer finds 1

customers in the system, are approximately independent. The

marginal distribution of the residual service time for the J-th
server 1s then approximately the PH-distribution with representa-

tion C[u(J,n), S(I)1, for 1 sJ s ec.

4. Asymptotic Behavior of the Stationary Waiting Time Distribution

at Arrivals.

Once the vector X1 and the matrix R are known, the
probabllity distribution W(*) of the walting time at arrivals
under the first-come, first-served discipline, may be ceomputed by
solving a finite, highly structured system of differential equations
with constant eoefficients. This will be shown by generalizing the

;
E3
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proof, given for the case of the GI/PH/1 queue, in (8] or [91.
For multi-server queues, the practical utility of this result is
severely limited by the dimension m. The proof of this result is
however essential to the derivation of the desired asymptotic

formula for W(*).
Let the matrices C and D be defined by

C=S(1) S(2) & ... @ S(e),
(24)

D = $°(1) (1) @ s°(2) 8(2) @ ... @ 5%(c) B(e),

where the sumbol @ 1is the Kronecker sum of matrices [1]. The

distribution W(:) may be viewed as the distribution of the time
till absorption into the state ®* in the Markov process with

generator Q, given by

| e e o+l c+2 c*3 ...

r 0 o 0 ° o ..

¢ iDe c 0 0 0

c+l | O D c 0 0

(5) @ = — | ‘
e+2 | 0 0 D c 0 oo | \

e+3 ' O 0 0 D C

i

in which the initial probability vector is given by

Zp &t Xy & X Ry X
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It is readily seen that the Laplace~Stieltjes transform w(s)

of W(-) 1is given by

(26) wis) = x. e +x

- MR [ (s1-c)~1p1t e

Ipet, Vel

where ®#(s) 1s the square matrix of order m, which satisfies
(27) ¥#(s) = I + R ¥*(s) (sI-C)~ D.

The equation (27) is now transformed in the same manner as discussed
in {9]. If ¥(:) 1is the matrix of mass functions with Laplace-
Stieltjes transform ¥#(s) and y(x) 1s the m®-vector obtained by
forming the direct sum of rows of ¥(x), then we derive from (27)

that
;- (28) ¥(x) = ¥ - y(I8C + RTe D)~1{I8T - expl(I8C + RTQD)X]}(RT.D):

for x 2 0. The vector v 1s the ma-vector obtained by forming

the direct sum of the identity matrix. RT 1s the transpose of the

T N

i matrix R. \

We now set v°

LT o reae

= ~ v(I8C + RTQD)'l, and 9(x) =
g? exp( (IgC + RTID)x], for x20. The mxm matrices V° and
6(x) have the vectors y° and @(x) as the direct sums of their

respective rows. They satisfy the equations

T (29) Vec+RV DS -1, :
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and
(30) e'(x) = 6(x) ¢ + R 6(x) D, 0(0) = V°,

for x 2 0.

By virtue of (28), the matrix V¥(x) 1s then given by
(31) ¥(x) = I +RV°D~R6(x)D, for x 2 0.
The distribution W(:) 1is given by
(32) W(x) = xp e +x, ;e+x, ;R vVDe- X,.; Roe(x) De,

for x 2 0. This expression may be further simplified. We post-
multiply in (29) by e and note that Ce + D e = 0. This ylelds
that VO D e = (1-R)"} e. Upon substitution into (32), we readily
obtain

(33) W(x) = 1 - x,1 R e(x) D e, for x 2 0.

We see that the probability distribution W(-) may, in principle,

be computed by first'evaluating the matrix V° and then solving
the matrix-differential equation (30). In order to obtain the

asymptotic formula, we nevd a number of preliminary lemmas.-

Lemma

The matrix C + n D, given by
(34) ¢ + n D = [S(1) + n 8°(1) 8(1)18 ... ®[S(c) + n 8°(c) B(e)],

is an irreducidble, stable matrix. 1Its eigenvalue - { of maximal

real part 1is given by

(35) «-E= I vy, ).
1
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b3

The corresponding left eigenvector is given by u = u(n). The
corresponding right eigenvector g?, normalized by - g}g? =1, 1s

given by the Kronecker product g? = g?(l) 2 ... 0 g?(c), where

s M e . dir .

ety .

(36) u°Q) = —a=2 -y
nby(n)+B 1)y, (M)I-5(3)1725°(s)

for 1 sJ s c.

Proof

Since each of the matrices S(J) + n'§?(d)‘§(3), l<Jysec, is
an irreducible stable matrix, so is the matrix C + n D, [11]l. The

matrix C + n D 1s the sum of ¢ matrices of the form

Ig...elS()+ns%) “8()1eIe ... I

This readily yields, by (18), that
c
u(C+nD)= [ wd(n) "u .
J=1
The vector gP(J) is clearly a right eigenvector of
S(J) + n 8°¢J) * 8(J), corresponding to ¥4(n). Purthermore
¢

ul,n) u®@) = 1. Stnce u gg - Jn1 u(d,n) u°(J) = 1, the proof

is complete.

Lemma U4

The matrix 1 8 C + RT

8 D has nonnegative off-diagonal
elements and is irreducidble. Its eigenvalue of maximal real part

is =~ §. The corresponding left and right eigenvectors are re- f.ﬁ

spectively given by 5? f u and ‘g? ] g?. Their inner product




is one.

Proof

The off-diagonal elements of I 2 C + RT

2 D are clearly
nonnegative. The irreducibllity of the matrix I £ C + RT eD
follows from the positivity of R and the irreducibility of the

representations of the service time distributions.

We have

T T

@D) =z puC+nz QubD=z gu(C+nD)=

(ETOQ)(IDC-I-R
- E(ET [} 9_):

and a similar calculation for the right elgenvector. Since both
eigenvectors are positive, -~ £ 1s the eigenvalue of maximal real

part [2].

Lemma 5

T @ p)-1, satisfies

The vector v° = - y(I® C + R
(37) v e u°) =gl
Also

(38) uDe=£Q -mL,

Proof

It follows from the definition of v° that
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vCu® 0y®) = - v(x eC+R" eD) T #u®) = g7y 0%,

R R I TN e e L e A T

However =~ 07 .
u; u ¢
o |
uz u m :
vu' 9 u®) =g, &py ceer gl | 1 = L ouey u’) =uu’ =1, 5
A v= :
R ] N
% ¥

The vectors e, are the m unit-vectors of dimension m. This §

proves Formula (37).

A typilcal term of D e 1s the Kronecker product
ge ... Q§°(J)ﬂg ««. g@e. Premultiplication by u = u(l) @ ...
gu(c) ylelds

|o®

S TR S

u(y) s°¢) = a(n - 17T ¥y (n) BT, ()T - $(3)1°L s°(3) =
(7\ - 1)-1‘J’J(ﬂ)s

so that %
-1 ¢ -1 E
uDe=(n-1) I vg(n) = EQ1 - M),
J=1
Theorem 2

The waiting time distribution W(*) satisfies
(39) 1- W) =@ -m (x,_y 2) e o(e™H), asx e
Proof

It follows from the definition of the vector 6(x) and the
properties of the matrix I ©€C + RT 2 D, that
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e u) - (27 # wile X+ o(e~t%)

- E'l(g? ® ule™S* + o(e™Xy, as x + =,

The vector z7 @ u is the direct sum of the rows of the matrix

Z * u. The preceding formula may therefore be equivalently written

as
0(x) = t'l(g . g)e'Ex + o(e™5%), as x + o,
Substitution into (33) ylelds

1-W(x) = £ H(x,_; R2)(uDele™™® + ole™®), as x » .
Since R z = n 2z, and by using Formula (38), we readily obtain (39).

Remark

Results, similar to those in Theorems 1 and 2, may be proved
for the stationary distributions of the queue length and the
walting time at an arbitrary time. The proofs proceed along the
same lines as in the single server case, discussed in [9]. The
same decay parameters n and £ are obtained, but the multi-

plicative constants are different.

Computational Procedure and Applications

The decay parameters n and £ may be computed together by

elementary algorithms. There are various alternative methods. It
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L is advisible to solve the equation

¢
(40) z = f[- z WJ(Z)].
J=1

for n 1in (0,1) dby a method which does not involve derivatives,

The secant or bilsectlion methods may dbe lmplemented with equal ease.

At each stage of the computation, we have two values zy and

z, satisfying

c c
0 <z < f[— Jfl WJ(zl)] <n < f[} Jfl Wd(zz)] <z, <1,

since the right hand side of (40) i1s increasing. As the next trial
value 2z' 1s obtained, either by bisection or the secant method,
the corresponding values wJ(z'), 1l sJ s ¢, are computed by

solving the equations
(41) z B3Iy (2)T - S 5°Q) = 1,

for their unique solutions in the intervals (-13,0), 1 s$sJ sec.

One clearly only solves those equations which are actually

different. The monotonicity properties of the wJ(z), proved in
Lemma 1 are useful in solving the equations (4l1). When the
interval (zl, z ), which brackets n 1s sufficiently small, we
evaluate a final value n, which 1s the computed value of n.

The computed value E of £ 1is obtained by setting £ == 8 wJ(G).
J=1

For many PH-distributions of interest, the Laplace-Stieltjes

transform 1s, of course, explicitly available, so that the

equations (41) can then de written in a computationally more
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convenlent form.

Except for queues with a very small number of servers and
then only for PH~distributions with few phases, the computation of
the matrix R, and hence of the vectors "x, , and 2z, 1s not
practically feasible. Even without explicit knowledge of the
constant x -1 2% the asymptotic results of Theorems 1 and 2 have

-
practical uses.

With n and § so easlily computable, these results may be
used to test the merits of simulation procedures for the queue
length and waiting times in multiserver queues. The estimates of
-log [1 -~ W(x)), for example, should for large x 1lie approximately
on a straight line of s)lope &. Assuming that the simulation pro-
cedure can correctly identify the parameter £, it should also be
sufficlently accurate to provide a good estimate for the intercept
of the linear asymptote of -log [l - W(x)]. We will then have an
estimate of X,y Z» which may be used in the asymptotic formulas
to provide estimates of tail probabllities for the queue length and
wailting time.

As a point of theoretical interest, it appeabs likely that the
asymptotic results of Theorems 1 and 2 remain valid for the GI/G/c
qQueue with heterogeneous servers, provided that each of the ¢
service time distridbutions have a Laplace-Stieltjes transform with
a negative abscissa of convergence, This may probably be proved by

appropriate continuity arguments and the approximation of the

service time distributiens by PH-distributions. This matter, as
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well as the applications to simulation methodology, will be taken

B

: up elsewhere.
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